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We combine the constraints from the recent Ly-α forest analysis of the Sloan Digital Sky Survey
(SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering,
the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find
significant improvements on all of the cosmological parameters compared to previous constraints,
which highlights the importance of combining Lyα forest constraints with other probes. Combining
WMAP and the Lyα forest we find for the primordial slope ns = 0.98 ± 0.02. We see no evidence
of running, dn/d ln k = −0.003 ± 0.010, a factor of 3 improvement over previous constraints. We
also find no evidence of tensors, r < 0.36 (95% c.l.). Inflationary models predict the absence of
running and many among them satisfy these constraints, particularly negative curvature models
such as those based on spontaneous symmetry breaking. A positive correlation between tensors and
primordial slope disfavors chaotic inflation type models with steep slopes: while the V ∝ φ2 model
is within the 2-sigma contour, V ∝ φ4 is outside the 3-sigma contour. For the amplitude we find
σ8 = 0.90 ± 0.03 from the Lyα forest and WMAP alone. We find no evidence of neutrino mass: for
the case of 3 massive neutrino families with an inflationary prior,

∑

mν < 0.42eV and the mass of
lightest neutrino is m1 < 0.13eV at 95% c.l. For the 3 massless + 1 massive neutrino case we find
mν < 0.79eV for the massive neutrino, excluding at 95% c.l. all neutrino mass solutions compatible
with the LSND results. We explore dark energy constraints in models with a fairly general time
dependence of dark energy equation of state, finding Ωλ = 0.72 ± 0.02, w(z = 0.3) = −0.98+0.10

−0.12,

the latter changing to w(z = 0.3) = −0.92+0.09

−0.10 if tensors are allowed. We find no evidence for

variation of the equation of state with redshift, w(z = 1) = −1.03+0.21

−0.28 . These results rely on
the current understanding of the Lyα forest and other probes, which need to be explored further
both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among
different data sets used here.

PACS numbers: PACS numbers: 98.80.Es

I. INTRODUCTION

Many different cosmological observations over the past
decade have helped build what is now called the standard
cosmological model. These observations suggest that the
universe is spatially flat, contains baryons, dark matter
and dark energy. The primordial spectrum of fluctua-
tions is approximately scale invariant and initial fluctu-
ations are Gaussian and adiabatic. This standard cos-
mological model can be described in terms of only a few
parameters, which explain a large number of observa-
tions, such as the cosmic microwave background (CMB),
galaxy clustering, supernova data, Hubble parameter de-

terminations, and weak lensing. The latest results come
from Wilkinson Microwave Anisotropy Probe (WMAP)
CMB measurements [1, 2, 3], Sloan Digital Sky Survey
(SDSS) and Two degree Field (2dF) galaxy clustering
analyses [4, 5, 6], and from the latest Supernovae type Ia
(SNIa) data [7, 8].

While the standard model is observationally well jus-
tified, many theoretical models predict that there should
be observable deviations from it. Perhaps the best mo-
tivated among these are the predictions of how the uni-
verse was seeded by initial fluctuations. The standard
paradigm is inflation, which predicts that the fluctua-
tions should be almost, but not exactly, scale invariant
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[9]. A typical deviation for the slope of the primordial
perturbations is predicted to be of order of a few parts
in a hundred away from its scale invariant value ns = 1
and could be of either sign. This should be observable
with high precision cosmological observations. Despite
tremendous progress over the past couple of years the
current constraints do not yet distinguish between dif-
ferent inflationary models [10, 11]. Alternative models
also predict deviations from scale invariance similar to
inflation [12]. Another prediction of these models is that
the rate of change of slope with scale is rather small,
αs = dns/d lnk ∼ (ns − 1)2 ∼ 10−3, which should not
be observable in the near future. A third prediction that
can distinguish among the different models is the amount
of tensor perturbations they predict. Some models pre-
dict no detectable tensor contribution [9, 13], while other
models predict a tensor contribution to the large scale
CMB anisotropies comparable to that from scalars. It is
clear that determining the shape and amplitude of the
scalar and tensor primordial power spectra will be one of
the key tests of various models of structure formation.

Current observational constraints on the primordial
power spectrum are mostly limited to scales larger than
10h−1Mpc. There are various reasons for this: CMB
fluctuations are damped on small scales and their de-
tection would require high resolution, low noise detec-
tors, which are only now being built. Even with suf-
ficient signal-to-noise and angular resolution there may
be secondary anisotropies that may contaminate the sig-
nal from primary anisotropies. On small scales, matter
undergoes strongly nonlinear evolution, which erases the
initial spectrum of fluctuations and prevents galaxy clus-
tering and weak lensing surveys from extracting this in-
formation. On the other end, the largest observable scale
is the horizon scale seen by CMB fluctuations. The small
number of available modes on the sky prevents one from
accurately determining the primordial spectrum on these
scales from the CMB. The largest scales probed by galaxy
clustering are even smaller. As a result, the primordial
power spectrum is currently probed over a relatively nar-
row range of scales and the shape of the primordial power
spectrum cannot be accurately determined.

To improve these constraints one should determine the
fluctuation amplitude on smaller scales. Nonlinear evo-
lution prevents one from obtaining useful information at
z = 0, so one must look for probes at higher redshift. Of
the current cosmological probes, the Ly-α forest – the ab-
sorption observed in quasar spectra by neutral hydrogen
in the intergalactic medium (hereafter IGM) – has the
potential to give the most precise information on small
scales [14]. It probes fluctuations down to megaparsec
scales at redshifts between 2-4, so nonlinear evolution,
while not negligible, has not erased all of the primordial
information.

In this paper we combine CMB/LSS constraints with
the new analysis of the Ly-α forest from SDSS data [15].
The Sloan Digital Sky Survey [16] uses a drift-scanning
imaging camera [17] and a 640 fiber, double spectrograph

on a dedicated 2.5 m telescope. The SDSS data sample
in data release two [18] consists of more than 3000 QSO
spectra with z > 2.2, nearly two orders of magnitude
larger than previously available [19, 20, 21]. This large
data set allows one to determine the amplitude of the flux
power spectrum to better than 1%. Theoretical analysis
of this flux power spectrum shows that at the pivot point
k=0.009 s/km in velocity coordinates, which is close to
k=1h/Mpc in comoving coordinates for standard cosmo-
logical parameters, the power spectrum amplitude is de-
termined to about 15% and the slope to about 0.05, with
the error budget dominated by uncertainties in theoret-
ical modelling [22, 23]. This is an accuracy comparable
to that achieved by WMAP. More importantly, it is at
a much smaller scale, so combining the two leads to a
significant improvement in the constraints on primordial
power spectrum shape over what can be achieved from
each data set individually.

A second theoretical prediction where the basic cos-
mological model is expected to require modifications is
that neutrinos have mass. Atmospheric mixing and so-
lar neutrino results suggest that the total minimum neu-
trino mass is about 0.06eV [24, 25, 26]. These obser-
vations are only sensitive to relative neutrino mass dif-
ferences and not to the absolute neutrino mass itself.
Cosmology on the other hand can weigh neutrinos di-
rectly. Massive neutrinos slow down the growth of struc-
ture on small scales and modify the amplitude and shape
of the matter power spectrum. They also modify the
CMB power spectrum. If one measures both the CMB
and matter power spectra with high precision across a
wide range of redshifts and scales then one can deter-
mine the neutrino mass with high accuracy [27]. The
question of neutrino mass is also interesting in light of
recent Los Alamos Liquid Scintillator Neutrino Detector
(LSND) experimental results, which, if taken at a face
value, suggest mν > 0.9eV [28, 29, 30], which should be
observable by cosmological neutrino weighing.

A third theoretical prediction of departures from the
standard model, and one whose consequences would be
particularly far reaching, is that dark energy is not simply
a cosmological constant introduced already by Einstein,
but something more complicated and dynamical in na-
ture. In the case where dark energy is a scalar field one
would expect that it has a kinetic energy term in addi-
tion to the potential term, which modifies its equation of
state. This is expected to evolve with time, but theoreti-
cal predictions are rather uncertain and are suggestive at
best. A change in equation of state changes both the rate
of growth of structure and the angular size of the acous-
tic horizon in the CMB. As a result these changes can be
observed both through the CMB and by comparing the
growth of structure at different redshifts.

Many different methods have been discussed in the lit-
erature on how to improve the current constraints from
methods such as supernovae type Ia (SNIa), CMB, weak
lensing, and cluster abundances. One method to con-
strain the nature of dark energy that has not attracted
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much attention, yet has the potential to produce results
on a relatively short time scale, is comparing measure-
ments of amplitude of fluctuations at high redshift from
the Lyα forest and CMB to that at low redshift from
galaxy clustering. Dark energy affects the rate of growth
of structure, especially for z < 1 where dark energy is dy-
namically important. In this paper we combine WMAP
and SDSS Lyα forest measurements at high redshifts,
where dark energy is expected to be negligible, with
the amplitude determination at z = 0.1 from the SDSS
galaxy bias analysis [31]. In general, galaxy clustering is
believed to be proportional to matter clustering on large
scales up to a constant of proportionality. This constant,
the so called bias, is a free parameter that cannot be de-
termined from the clustering analysis itself. There are
many different methods for how to determine the bias
and thus the amplitude of matter fluctuations such as
redshift space distortions [4, 32], the bispectrum [33],
or weak lensing [34, 35], but the current constraints are
weak. A recent analysis of the luminosity dependence of
galaxy clustering [4], combined with a determination of
the halo mass distribution for these galaxies, provides a
new constraint on the bias and amplitude of fluctuations
in SDSS data [31].

One difference of the current paper in comparison with
previous analyses of this type is that we present 68.32%,
95.5% and 99.86% confidence intervals (we denote these
the 1, 2, and 3-σ intervals, but note that they do not
depend on the assumption of Gaussianity in the error
distribution) on all the parameters (or 95% and 99.9%
confidence level upper limits in the case of no detections).
Sometimes the 3-σ intervals can be significantly different
from 3 times the corresponding 1-σ intervals. This can
happen if there are degeneracies in the data that appear
to be broken at 1-σ, but that the 2 or 3 σ contours al-
low. In this case the 3-σ constraints are weaker than the
corresponding 1-σ intervals would suggest. The opposite
can happen as well, especially if there is a natural bound-
ary that the parameter cannot cross (such as a parameter
being positive definite). More generally, presenting 1-σ
contours alone is not very meaningful, since whatever is
within 1-σ is essentially a good fit to the data. One can
argue that the goal of observations is to exclude regions
of parameter space and this is much better represented
by reporting 2 and 3-σ contours than the best fit value
and its 1-σ range.

Another issue that we address in detail is the robust-
ness of the constraints against the number of parame-
ters one is exploring. Sometimes the constraints change
significantly if new parameters are added to the mix be-
cause these new parameters are degenerate with param-
eters one is interested in. However, often the quality of
the fit is not improved at all and moreover these new
parameters may not be well motivated from the perspec-
tive of fundamental theories or other considerations. In
this case one is entitled to adopt an Occam’s razor ar-
gument against the introduction of these parameters in
the estimation. To some extent this is always a subjec-

tive procedure, since what is natural for one person may
not be for someone else. It has also been argued that
one should pay a penalty for each new parameter that is
introduced which does not improve the quality of the fit
[36]. However, this procedure is also poorly defined and
there is no unique choice for the penalty. In this paper
we explore both the solutions with the minimum number
of parameters as well as with several additional param-
eters. We believe that there is merit to the approach
which parametrizes the constraints with as few param-
eters as possible, so our main results are given for this
case. However, one also wants to know how robust and
model independent are the constraints, which we explore
by adding several additional parameters to the analysis.

The outline of this paper is as follows. We first present
the method, then our basic results in several tables and
then discuss them in detail. We focus particularly on
the question of how have the new results improved upon
the previous constraints and how robust are the conclu-
sions upon removing one or more of the data ingredients.
The latter is particularly interesting in light of possible
systematic effects that may be present both in the new
analyses of Lyα forest and bias as well as in previous
analyses of WMAP, SDSS galaxy clustering, and SNIa.

II. METHOD

We combine the constraints from the SDSS Ly-α forest
[15] with the SDSS galaxy clustering analysis [4], SDSS
bias analysis [31], and CMB power spectrum observations
from WMAP [1, 2, 3]. We verified that including CBI,
VSA, and ACBAR [37, 38, 39] makes very little differ-
ence in the final results and we do not include them in
the current analysis. Similarly, we verified that including
the latest 2dF power spectrum analysis [5] in addition to
SDSS does not make much difference, so we do not in-
clude those constraints either. We could have used 2dF
constraints instead of SDSS, but we chose not to because
for 2dF the bias constraints are somewhat weaker [33]
and we would like to have an independent verification
of results that use the 2dF bias [40]. We will thus refer
to CMB constraints as WMAP, to LSS/galaxy cluster-
ing constraints as SDSS-gal, to SDSS bias constraints as
SDSS-bias and to SDSS Ly-α forest constraints as SDSS-
lya. We have added earlier Lyα forest constraints in a
weak form [20, 41], which have a small, but not negli-
gible effect. We do not include more recent Lyα forest
constraints [19, 21] since there are signs of systematic
discrepancy and/or underestimation of errors when com-
pared to SDSS Lyα forest data [15]. To this we add the
latest supernova constraints as given in [7]. We do not
use this full combination in all calculations, since we want
to emphasize what the new constraints bring to the mix
and we want to explore the sensitivity of the constraints
to individual data sets. For example, for the investiga-
tion of the shape of the primordial power spectrum we
perform the analysis using WMAP+SDSS-lya alone and
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show that this combination in itself suffices to constrain
the running by a factor of 3 better than combining ev-
erything else together. We also perform several analyses
by dropping one of the constraints and explore the ro-
bustness of the conclusions. For example, we explore the
constraints on the dark energy equation of state with
and without SNIa and with and without SDSS-bias and
SDSS-lya.

Our implementation of the Monte Carlo Markov Chain
(MCMC) method [42] uses CMBFAST [43] version
4.5.1[95], outputting both CMB spectra and the corre-
sponding matter power spectra P (k). We evolve all the
matter power spectra to a high k using CMBFAST and
we do not employ any analytical approximations. We
output the transfer functions at the redshifts of interest,
between 2-4 for SDSS-Lyα forest and 0.1 for SDSS-gal.
Note that for massive neutrinos the high precision (HP)
option must be used to achieve sufficient accuracy in the
transfer function.

A typical run is based on 16-24 independent chains,
contains 50,000-200,000 chain elements and requires sev-
eral days of running on a computer cluster in a serial
mode of CMBFAST. The acceptance rate was of order
30-50%, correlation length 10-30 and the effective chain
length of order 3,000-20,000 (see [11] for definitions of

these terms). In terms of Gelman and Rubin R̂-statistics
[44] we find the chains are sufficiently converged and

mixed, with R̂ < 1.05, significantly more conservative
than the recommended value R̂ < 1.2.

Our most general cosmological parameter space is

p = (τ, ωb, ωm,
∑

mν , Ωλ, w, ∆2
R

, ns, αs, r), (1)

where τ is the optical depth, ωb = Ωbh
2, where Ωb is

baryon density in units of the critical density and h is the
Hubble constant in units of 100km/s/Mpc, ωm = Ωmh2

where Ωm is matter density in units of the critical den-
sity,

∑

mν is the sum of massive neutrino masses (as-
suming either 3 degenerate neutrino families or 1 mas-
sive neutrino family in addition to 3 massless), Ωλ is the
dark energy density today and w its equation of state
(which is in general time dependent). Our pivot point
for the primordial power spectrum parameterization is
at kpivot = 0.05/Mpc and we expand the primordial
power spectrum at that point, defining the amplitude
of curvature perturbations ∆2

R
, slope ns, and its run-

ning αs = dns/d lnk. The choice of the pivot point
is somewhat arbitrary, but is meant to represent the
scale somewhere in the middle of the observational range.
In this case the largest scales are probed by the CMB
(k ∼ 10−3/Mpc) and the smallest scales are probed by
the Lyα forest (k ∼ 1/Mpc). In addition, this scale has
been (arbitrarily) chosen as a pivot point in CMBFAST
and has been used by previous analyses, which facilitates
the comparison. Note that there is no Hubble parameter
h in the definition of the pivot point: if CMB data are
used there is no advantage in defining the scale by tak-
ing out the Hubble constant, unlike the case of galaxy

clustering and Lyα forest.

We parametrize tensors in terms of their amplitude
∆2

h, and define the ratio relative to scalars as r =
T/S = ∆2

h/∆2
R

. This is also defined at the pivot point
k = 0.05/Mpc, just as for the scalar amplitude, slope
and running. We fix the tensor slope nT using r = −8nT .
We do not allow for non-flat models, since curvature is al-
ready tightly constrained by CMB and other observations
[40]. In addition, we will be testing particular classes of
models, such as inflation, which predict K = 0. For
the more general models, such as those with freedom in
the dark energy equation of state, relaxing this assump-
tion can lead to a significant expansion of errors [11].
We are therefore testing a particular class of inflation
inspired models with K = 0 and not presenting model
independent constraints on the equation of state. Note
that this assumption is implicit in most of the constraints
published to date, including those from the SNIa teams,
which often assume a CMB prior on Ωm [7]. This prior
is affected by the choice of parameter space one is work-
ing in and a self-consistent treatment is required. CMB
constraints on Ωm using an analysis where the equation
of state or curvature are not varied need not equal those
where these are varied. We follow the WMAP team in
imposing a τ < 0.3 constraint. Upcoming polarization
data from WMAP will allow a verification of this prior.

From this basic set of parameters we can obtain con-
straints on several other parameters, such as the baryon
and matter densities Ωb and Ωm, Hubble parameter h =
H0/(100km/s/Mpc) and amplitude of fluctuations σ8.
Since we do not allow for curvature we have Ωλ = 1−Ωm

and we use Ωm in all tables. In fact, our primary param-
eter is the angular scale of the acoustic horizon, which
is tightly constrained by the CMB. Similarly, although
we use ∆2

R
as the primary parameter in the MCMC we

present the amplitude in terms of the more familiar σ8.
In addition to the cosmological parameters above we also
keep track of several parameters related to the specific
tracers, described below.

A. CMB analysis

For the CMB we use the 1st year likelihood routine
provided by WMAP [2, 45], but replace l < 12 analysis
with the corresponding full likelihood analysis as given
in [46]. This is important for the running of the spectral
index constraints. As shown in [46], exact analysis in-
creases errors on low multipoles compared to the original
WMAP analysis, which leads to less stringent constraints
on running: it is typically increased by one standard de-
viation away from its negative value toward zero, i.e. to-
ward the no running solution. We find a similar effect in
our analysis when combined with Ly-α forest analysis.
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B. Galaxy clustering

We use the SDSS galaxy clustering constraints on the
galaxy power spectrum for k < 0.2h/Mpc [4]. We use
a linear to nonlinear mapping of the matter power spec-
trum using expressions given in [47]. The main nuisance
parameter is the linear bias of L∗ galaxies, b∗, which re-
lates the galaxy power spectrum to that of dark matter,
Pδg

(k) = b2
∗
Pδdm

(k), where δg and δdm are the galaxy and
dark matter density fluctuations, respectively, and P (k)
is their power spectrum.

The luminosity dependence of galaxy bias provides ad-
ditional cosmological constraints [31]. Observations show
that bias is relatively constant for galaxies fainter than L∗

and is rapidly increasing for brighter galaxies [4]. Theo-
retical and simulation predictions of halo bias [48, 49, 50]
show a similar dependence of bias on halo mass, with the
transition occurring at the so called nonlinear mass, cor-
responding to the mass within a sphere where the rms
fluctuation level is 1.68. The value of the nonlinear mass
depends on cosmological parameters such as the ampli-
tude and shape of the power spectrum, as well as the
matter density. A measurement of the halo mass dis-
tribution for a given luminosity class is possible using a
weak lensing analysis around these galaxies, which traces
the dark matter distribution directly. This allows a theo-
retical determination of galaxy bias for a given cosmolog-
ical model. Only those models for which the theoretical
predictions agree with the observations in all luminosity
bins are acceptable. This places strong constraints on
cosmological models. This constraint is not directly de-
termining the amplitude of fluctuations and bias, because
both the theoretical predictions and observationally in-
ferred values of bias change in a similar way. However,
the data suggest that for L∗, where statistical errors are
smallest, the predicted bias value is lower than the ob-
served one for standard cosmology Ωm = 0.3 and ns = 1.
Lowering Ωm or ns reduces the nonlinear mass and in-
creases theoretically predicted bias, bringing it into a bet-
ter agreement with observations. Additional constraints
come from the dependence of bias on luminosity, which is
constraining the amplitude of fluctuations. The method
is fairly robust in the sense that even appreciable changes
in halo mass determination do not change the bias pre-
dictions significantly. The analysis is performed using
the bias likelihood code as given in [31].

C. Lyα forest

Reference [22] describes in detail our method for ob-
taining the Lyα forest contribution to χ2 for any cosmo-
logical model. Rather than attempting to invert PF (k)
to obtain the matter power spectrum, we compare the
theoretical PF (k) directly to the observed one. In ob-
servationally favored models, the Universe is effectively
Einstein-de Sitter at z > 2, so the cosmology information
relevant to the Ly-α forest is completely contained within

PL(k) measured in velocity units. For any given model
in the MCMC chain we compute the matter power spec-
trum in velocity units and interpolate from a grid of cos-
mological simulations covering a broad range of values to
obtain predictions of the flux power spectrum. We com-
pare these to the measured SDSS flux power spectrum to
derive the likelihood of the model given the data.

The Lyα forest contains several nuisance parameters
which we are not interested in for the cosmological anal-
ysis, although some of them are of interest for studies of
IGM evolution. In the standard picture of the Ly-α for-
est the gas in the IGM is in ionization equilibrium. The
rate of ionization by the UV background balances the
rate of recombination of protons and electrons. The re-
combination rate depends on the temperature of the gas,
which is a function of the gas density. The temperature-
density relation can be parameterized by an amplitude,
T0, and a slope γ − 1 = d lnT/d lnρ. The uncertainties
in the intensity of the UV background, the mean baryon
density, and other parameters that set the normalization
of the relation between optical depth and density can
be combined into one parameter: the mean transmitted
flux, F̄ (z). The parameters of the gas model, T0, γ − 1,
and F̄ , must be marginalized over when computing con-
straints on cosmology. They are a function of redshift.
Our model for the redshift evolution of F̄ , T0, and γ is
explained in detail in [22]. We also add additional nui-
sance parameters such as the filtering length kF [51] and
parameters that characterize various physical effects [23],
described in more detail below. This gives rise to a num-
ber of additional nuisance parameters.

Each time there are nuisance parameters that one is
not interested in there are two approaches that one can
take. One can either keep these parameters as inde-
pendent and add them to the MCMC chain or one can
marginalize over them for each set of cosmological mod-
els. The advantage of the first approach is that at the
end one can extract the best fit values of these param-
eters and their correlations with other cosmological or
nuisance parameters, in case one is interested in these.
The disadvantage is that increasing the number of di-
mensions of the MCMC decreases the acceptance rate of
the chains, increasing the computational time. Another
disadvantage is that in many dimensions the MCMC ap-
proach often does not find the global minimum, which is
of interest if one wants to assess the improvement in χ2

with the addition of new parameters.

The second approach is marginalization over the nui-
sance parameters. We implement it by maximizing the
likelihood (minimizing χ2) over the phase space of these
parameters for each cosmological model. The computa-
tional efficiency of this approach depends on the prob-
lem at hand and numerical implementation. In our case
we find that the computational time increase is compa-
rable to the penalty paid in the first approach due to
the lowered efficiency of the MCMC sampler, so there
is no numerical advantage in using one over the other.
We decided to use the latter approach because we would
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like to be able to interpret the minimum χ2 values be-
tween different chains: we have found that the marginal-
ization approach gives a minimum χ2 within unity of the
global minimum for the chain lengths we adopt, while the
approach of working in 40-dimensional parameter space
gave minimum χ2 values in our MCMC chains that were
often significantly higher than the actual global mini-
mum. This is expected since the likelihood function is
shallow around the maximum and the large phase space
volume of 20 additional dimensions wins over the penalty
induced by exp(−∆χ2) for small ∆χ2. We have verified
that both approaches lead to the same probability distri-
butions of cosmological parameters, so this choice is not
important for the MCMC distributions themselves.

More details of the Lyα forest likelihood module are
described in [22]. The simulations cover the plausibly
allowed range of F̄ , T0, γ − 1, kF , ∆2(keff), neff , and
dneff/d lnk. Simulations with several box and grid sizes
are used to guarantee convergence, which is verified by
detailed convergence studies on smaller box simulations.
The grid is based on hydro-particle mesh simulations [51],
but these are explicitly calibrated using fully hydrody-
namic simulations [52, 53]. The simulation results are
combined in an interpolation code that produces PF (k)
for any relatively smooth (CDM-like) input PL(k), F̄ ,
T0, and γ − 1. We also marginalize over the filtering
scale kF , which is related to the gas Jeans scale, where
pressure balances gravity, but depends on the full gas
temperature history since reionization rather than just
the instantaneous temperature T0 [51].

There are several possible systematic effects in the Lyα
forest that have been investigated in [23]. The most im-
portant effect, that from damped systems, can be reliably
removed using the existing constraints on the abundance
of damped systems. It leads to an increase in slope by
0.06. We find no evidence of other effects, such as fluc-
tuations in the UV background or galactic winds. The
former effect is constrained by the expected rapid evolu-
tion of the attenuation length with redshift, which would
cause the effect to be more significant at high redshift.
While current models of galactic winds produce no sig-
nificant effect on the Lyα forest flux power spectrum [23],
these need to be explored further. The fact that the ef-
fective curvature of the matter power spectrum derived
solely from Lyα forest analysis agrees with the expected
value [22] provides a constraint on any additional con-
tamination. An independent constraint is provided by
the consistency of the matter power spectrum results as
a function of redshift over the range 2 < z < 4 [22].
Neither of these arguments are conclusive and we find
examples of systematic effects that can escape one or the
other test. Additional analyses, such as correlations of
the Lyα forest with galaxies [54] and quasars [55, 56], as
well as a bispectrum analysis [57], will be able to test
further the current models.

III. RESULTS

The basic results for many different MCMC runs are
given in tables 1-4. We give results for many different
parameter combinations and different experiment com-
binations, with the purpose of assessing the robustness
of constraints on both the data and parameter space.
For most of the parameters we quote the median value
(50%), [15.84%,84.16%] interval (±1σ), [2.3%,97.7%] in-
terval (±2σ) and [0.13%,99.87%] interval (±3σ). These
are calculated from the cumulative one-point distribu-
tions of MCMC values for each parameter and do not
depend on the Gaussian assumption. For the parameters
without a detection we quote a 95% confidence upper
limit and a 99.9% confidence upper limit. We have found
that our MCMC gives a reliable estimate of 3-sigma con-
tours for one-dimensional projections. The correspond-
ing 2-d projections are however very noisy and we do not
plot 3-sigma contours in our 2-d plots.

All of the restricted parameter space fits are acceptable
based on χ2 values, starting from the basic 6-parameter
model p = (τ, ωb, ωm, Ωλ = 1 − Ωm, ∆2

R
, ns). We de-

note this as 6-p in the tables. Introducing additional pa-
rameters such as tensors, running, equation of state, or
neutrino mass does not improve the fits. We do not re-
port the values of nuisance parameters such as the galaxy
bias or Lyα forest mean flux, temperature-density rela-
tion, or filtering length. Some of these are discussed else-
where [22, 31]. When comparing the improvements over
previous analyses we try to compare the results to our
own MCMC analysis of previous data. This is because
small changes in the treatment, such as assumed priors,
can affect the parameters and so the constraints between
different groups are not directly comparable. When com-
paring our analysis to [11] we find in general a very good
agreement between the two, even though our MCMC im-
plementation is independent. Our primary goal is to de-
termine how much the new data improve over the pre-
vious situation and to answer this it is best to perform
identical analyses with and without the new data. Below
we discuss the results from these tables in more detail.

A. Amplitude of fluctuations

From tables 1-4 one can see that the value of σ8 is
remarkably tight. For 6-p models (table 1) we find

σ8 = 0.897+0.033
−0.031

+0.065
−0.058

+0.097
−0.088 (2)

This value does not change significantly when running,
tensors and massive neutrinos are added to the mix,
which shows that the constraint is model independent.
In contrast, in an analysis without the Lyα forest and
bias σ8 changes from σ8 = 0.951+0.90

−0.079 (table 1) to

σ8 = 0.786+0.119
−0.100 (table 3) when massive neutrinos are

added as a parameter (see also [11]), so previous con-
straints were significantly more model dependent.
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Table 1: Constraints on basic 6 parameters and tensors. Median value, 1σ, 2σ and 3σ intervals on cosmological parameters combining
WMAP, SDSS galaxies (gal), SDSS bias (bias), SDSS Lyα forest (lya) and SNIa (SN) data as derived from the MCMC analysis. In each
case we list individual data sets. Note that WMAP is included in all the chains. In the absence of a detection we give 95% upper limit
and (in brackets) 99.9% upper limit. All of the values are obtained from MCMC. The columns compare different theoretical priors and

different data sets. The parameters for 6 parameter models 6-p are τ, ωb, ωm,Ωm = 1 − Ωλ, σ8, ns.

6-p 6-p 6-p 6-p+r 6-p+r

WMAP+gal WMAP+gal+lya all WMAP+gal+lya all

102ωb 2.38+0.14

−0.12

+0.27

−0.23

+0.39

−0.33
2.31+0.09

−0.08

+0.17

−0.17

+0.26

−0.24
2.33+0.09

−0.08

+0.17

−0.17

+0.26

−0.25
2.40+0.12

−0.105

+0.26

−0.19

+0.47

−0.30
2.40+0.11

−0.10

+0.23

−0.19

+0.33

−0.27

Ωm 0.294+0.041

−0.034

+0.089

−0.061

+0.143

−0.082
0.299+0.037

−0.032

+0.082

−0.061

+0.133

−0.084
0.281+0.023

−0.021

+0.046

−0.040

+0.070

−0.061
0.278+0.036

−0.033

+0.076

−0.062

+0.118

−0.094
0.270+0.022

−0.021

+0.045

−0.041

+0.072

−0.060

ns 0.994+0.044

−0.035

+0.077

−0.060

+0.101

−0.080
0.971+0.023

−0.019

+0.048

−0.038

+0.070

−0.055
0.980+0.020

−0.019

+0.041

−0.037

+0.065

−0.051
1.00+0.034

−0.028

+0.070

−0.050

+0.124

−0.076
1.00+0.027

−0.024

+0.056

−0.045

+0.085

−0.063

τ 0.176+0.078

−0.071

+0.117

−0.124

+0.124

−0.161
0.133+0.052

−0.045

+0.104

−0.087

+0.148

−0.126
0.160+0.040

−0.041

+0.079

−0.080

+0.117

−0.120
0.138+0.050

−0.045

+0.096

−0.085

+0.151

−0.118
0.155+0.040

−0.040

+0.078

−0.077

+0.112

−0.114

σ8 0.951+0.090

−0.079

+0.173

−0.142

+0.124

−0.161
0.890+0.034

−0.032

+0.065

−0.060

+0.096

−0.089
0.897+0.033

−0.031

+0.065

−0.058

+0.097

−0.086
0.901+0.035

−0.033

+0.069

−0.062

+0.107

−0.096
0.904+0.035

−0.031

+0.069

−0.059

+0.106

−0.094

h 0.706+0.037

−0.034

+0.068

−0.065

+0.097

−0.091
0.694+0.030

−0.028

+0.059

−0.057

+0.092

−0.086
0.710+0.021

−0.021

+0.044

−0.040

+0.066

−0.061
0.719+0.036

−0.032

+0.076

−0.061

+0.133

−0.091
0.726+0.025

−0.023

+0.052

−0.045

+0.081

−0.068

r 0 0 0 < 0.38(0.55) < 0.36(0.51)

Table 2: Constraints on running. Same format as for table 1.

6-p+αs 6-p+αs 6-p+αs 6-p+αs 6-p+αs + r

WMAP WMAP+gal WMAP+lya all WMAP+gal+lya

102ωb 2.33+0.16

−0.16

+0.33

−0.32

+0.50

−0.47
2.30+0.14

−0.14

+0.29

−0.27

+0.45

−0.38
2.36+0.11

−0.10

+0.22

−0.19

+0.32

−0.27
2.33+0.09

−0.09

+0.18

−0.17

+0.28

−0.25
2.42+0.12

−0.12

+0.24

−0.22

+0.39

−0.31

Ωm 0.246+0.072

−0.057

+0.159

−0.103

+0.263

−0.140
0.269+0.041

−0.033

+0.091

−0.062

+0.156

−0.095
0.257+0.055

−0.048

+0.105

−0.073

+0.151

−0.092
0.281+0.022

−0.021

+0.045

−0.043

+0.067

−0.062
0.273+0.037

−0.033

+0.077

−0.059

+0.119

−0.089

ns 0.977+0.061

−0.061

+0.122

−0.123

+0.181

−0.190
0.959+0.052

−0.053

+0.104

−0.107

+0.164

−0.161
0.990+0.032

−0.029

+0.063

−0.053

+0.090

−0.076
0.977+0.025

−0.021

+0.052

−0.040

+0.083

−0.058
1.00+0.034

−0.032

+0.070

−0.060

+0.102

−0.085

τ 0.204+0.070

−0.086

+0.092

−0.149

+0.0957

−0.192
0.195+0.065

−0.068

+0.097

−0.123

+0.103

−0.165
0.188+0.078

−0.075

+0.108

−0.130

+0.111

−0.171
0.163+0.041

−0.041

+0.083

−0.078

+0.123

−0.111
0.142+0.0493

−0.0465

+0.0979

−0.0879

+0.143

−0.117

σ8 0.873+0.115

−0.107

+0.24

−0.201

+0.381

−0.297
0.897+0.059

−0.059

+0.108

−0.104

+0.189

−0.137
0.895+0.034

−0.032

+0.068

−0.064

+0.102

−0.094
0.899+0.034

−0.030

+0.070

−0.058

+0.107

−0.085
0.900+0.034

−0.032

+0.069

−0.063

+0.100

−0.094

h 0.736+0.061

−0.054

+0.127

−0.103

+0.204

−0.146
0.716+0.039

−0.040

+0.079

−0.080

+0.135

−0.121
0.730+0.053

−0.046

+0.092

−0.080

+0.128

−0.107
0.709+0.022

−0.021

+0.046

−0.040

+0.072

−0.059
0.725+0.037

−0.035

+0.074

−0.066

+0.123

−0.094

r 0 0 0 0 < 0.45(0.64)

102αs −1.24+3.75

−3.63

+7.63

−7.23

+11.8

−11.1
−2.41+3.07

−3.10

+6.24

−6.14

+9.45

−9.20
−0.263+1.27

−1.13

+2.66

−2.21

+4.15

−3.22
−0.29+1.08

−1.00

+2.35

−1.84

+3.63

−2.61
−0.57+1.21

−1.14

+2.49

−2.26

+3.48

−3.39

It is useful to analyze what drives the σ8 determina-
tion. WMAP alone cannot provide a very tight determi-
nation, nor can the Lyα forest alone. But combining the
two is extremely powerful: from table 1 we see that just
these two data sets alone give σ8 = 0.895+0.034

−0.032 even with

running. So this combination in itself provides nearly
all of the information on σ8; galaxy clustering and bias
do not constrain this parameter any further when added
to the mix. They are however consistent with it: using
WMAP and SDSS galaxy clustering with bias and with-
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Table 3: Neutrino mass constraints. Same format as for table 1. All except last column are for the case of 3 degenerate neutrino families.
Last column is for 3 massless + 1 massive neutrino family.

6-p+3 × mν 6-p+3 × mν 6-p+3 × mν 6-p+3 × mν + αs + r 6-p+1×mν

WMAP+gal WMAP+gal+lya all all all

102ωb 2.41+0.16

−0.14

+0.31

−0.25

+0.46

−0.37
2.34+0.08

−0.08

+0.17

−0.17

+0.25

−0.25
2.36+0.09

−0.09

+0.19

−0.18

+0.32

−0.29
2.47+0.13

−0.12

+0.26

−0.22

+0.38

−0.32
2.35+0.12

−0.10

+0.25

−0.19

+0.36

−0.28

Ωm 0.352+0.131

−0.080

+0.241

−0.120

+0.334

−0.149
0.316+0.029

−0.027

+0.067

−0.052

+0.124

−0.080
0.284+0.025

−0.023

+0.05

−0.044

+0.079

−0.060
0.277+0.025

−0.023

+0.051

−0.045

+0.086

−0.064
0.287+0.028

−0.025

+0.060

−0.048

+0.103

−0.069

ns 1.00+0.051

−0.041

+0.098

−0.071

+0.131

−0.095
0.978+0.023

−0.020

+0.051

−0.039

+0.069

−0.055
0.989+0.026

−0.023

+0.053

−0.042

+0.076

−0.060
1.020+0.033

−0.033

+0.066

−0.061

+0.094

−0.082
1.00+0.032

−0.025

+0.061

−0.047

+0.083

−0.067

τ 0.133+0.081

−0.060

+0.144

−0.101

+0.165

−0.128
0.153+0.055

−0.042

+0.107

−0.075

+0.140

−0.101
0.185+0.052

−0.046

+0.099

−0.089

+0.114

−0.125
0.206+0.059

−0.058

+0.088

−0.105

+0.093

−0.143
0.195+0.059

−0.055

+0.096

−0.102

+0.104

−0.147

σ8 0.786+0.119

−0.100

+0.230

−0.172

+0.301

−0.230
0.873+0.035

−0.032

+0.066

−0.065

+0.099

−0.093
0.890+0.035

−0.033

+0.071

−0.064

+0.098

−0.092
0.882+0.032

−0.030

+0.069

−0.057

+0.107

−0.087
0.895+0.035

−0.033

+0.067

−0.063

+0.10

−0.094

h 0.663+0.070

−0.076

+0.117

−0.113

+0.164

−0.146
0.684+0.023

−0.022

+0.047

−0.047

+0.070

−0.083
0.710+0.023

−0.022

+0.047

−0.044

+0.075

−0.067
0.723+0.027

−0.025

+0.054

−0.047

+0.082

−0.080
0.744+0.024

−0.023

+0.050

−0.047

+0.078

−0.072

r 0 0 0 < 0.47(0.63) 0

102αs 0 0 0 −0.18+1.23

−1.24

+2.46

−2.50

+3.78

−3.62
0

∑

mν 1.54 (2.26) eV 0.54 (0.86) eV 0.42 (0.67) eV 0.66 (0.93) eV 0.84(1.61) eV

Table 4: Dark energy constraints. Same format as for table 1. All columns except last one assume constant equation of state w. Last
column gives constraints for the case where dark energy is time dependent as w = w0 + w1(1 − a).

6-p+w 6-p+w 6-p+w 6-p+w+αs + r 6-p+w0 + w1

WMAP+gal+SN all WMAP+gal+bias+lya WMAP+gal+bias+lya all

102ωb 2.36+0.13

−0.11

+0.26

−0.21

+0.38

−0.31
2.33+0.10

−0.09

+0.20

−0.18

+0.32

−0.27
2.34+0.09

−0.09

+0.19

−0.16

+0.28

−0.25
2.48+0.15

−0.13

+0.29

−0.24

+0.43

−0.34
2.33+0.10

−0.09

+0.20

−0.17

+0.32

−0.25

Ωm 0.303+0.029

−0.028

+0.061

−0.052

+0.093

−0.072
0.282+0.023

−0.023

+0.047

−0.044

+0.074

−0.067
0.264+0.028

−0.025

+0.056

−0.046

+0.109

−0.062
0.260+0.024

−0.022

+0.050

−0.040

+0.077

−0.056
0.285+0.024

−0.023

+0.047

−0.045

+0.070

−0.066

ns 0.987+0.041

−0.030

+0.077

−0.054

+0.105

−0.075
0.981+0.027

−0.023

+0.055

−0.042

+0.080

−0.062
0.980+0.026

−0.020

+0.051

−0.038

+0.068

−0.059
1.020+0.041

−0.037

+0.080

−0.068

+0.114

−0.096
0.978+0.028

−0.022

+0.058

−0.041

+0.084

−0.059

τ 0.160+0.082

−0.067

+0.130

−0.116

+0.139

−0.153
0.163+0.064

−0.057

+0.121

−0.103

+0.135

−0.146
0.145+0.066

−0.056

+0.125

−0.109

+0.152

−0.142
0.201+0.057

−0.063

+0.091

−0.117

+0.098

−0.163
0.152+0.067

−0.056

+0.127

−0.101

+0.146

−0.136

σ8 0.945+0.089

−0.080

+0.187

−0.150

+0.290

−0.212
0.895+0.033

−0.031

+0.067

−0.059

+0.104

−0.089
0.920+0.040

−0.041

+0.084

−0.072

+0.12

−0.093
0.890+0.030

−0.028

+0.063

−0.056

+0.099

−0.089
0.897+0.033

−0.031

+0.068

−0.059

+0.104

−0.088

h 0.699+0.027

−0.026

+0.054

−0.050

+0.080

−0.073
0.708+0.023

−0.022

+0.046

−0.044

+0.069

−0.064
0.736+0.039

−0.038

+0.080

−0.069

+0.119

−0.112
0.726+0.025

−0.024

+0.050

−0.048

+0.078

−0.072
0.707+0.024

−0.023

+0.049

−0.046

+0.074

−0.066

r 0 0 0 < 0.51(0.67) 0

102αs 0 0 0 −1.07+1.24

−1.16

+2.64

−2.26

+4.15

−3.31
0

w −1.009+0.096

−0.112

+0.18

−0.24

+0.26

−0.38
−0.990+0.086

−0.093

+0.16

−0.20

+0.22

−0.35
−1.080+0.149

−0.193

+0.24

−0.37

+0.31

−0.54
−0.908+0.077

−0.091

+0.14

−0.19

+0.19

−0.32
−0.981+0.193

−0.193

+0.38

−0.37

+0.57

−0.52

w1 0 0 0 0 0.05+0.83

−0.65

+1.92

−1.13

+2.88

−1.38
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out Lyα forest gives σ8 = 0.89± 0.06 [31], in remarkable
agreement with the analysis of WMAP+SDSS-lya. As-
suming that WMAP data are valid this implies that two
independent analyses of different data, SDSS-gal+bias
and SDSS-lya, lead to essentially the same value. Both
improve upon previous constraints, by a factor of 1.5-
2 for WMAP+SDSS-gal+bias and a factor of 3-4 for
WMAP+SDSS-lya. These new constraints remove al-
most all of the degeneracy between σ8 and optical depth
τ (figure 1).

There are many recent determinations of σ8 in the liter-
ature, which vary between 0.6 and 1.1. Recent discussion
of some of these methods and results, such as weak lens-
ing, cluster abundance, galaxy bias determination, and
SZ power spectrum can be found in [11, 31]. The value
found here is in good agreement with most of these con-
straints: it is on the low end of the SZ constraints and
on the upper end of some of the cluster abundance con-
straints. It is also in good agreement with the 2dF bias
constraints and with several weak lensing constraints.

While in the tables we do not present results for the
amplitude of metric (described here with curvature fluc-
tuation R) fluctuations at the pivot point we find it is
also tightly constrained to

∆2
R(kpivot = 0.05/Mpc) = (2.45 ± 0.23) × 10−9. (3)

B. Optical depth

The optical depth due to reionization is a parameter
that has a strong effect on the CMB. It suppresses the
CMB on small scales and thus leads to a strong degener-
acy with amplitude. This degeneracy can be lifted by the
polarization observations [58], but for WMAP 1st year
these are noisy and may contain significant contamina-
tion from foregrounds. The current analysis based on 1st
year data is rather unsatisfactory, since it is based on the
existing temperature-polarization cross-correlation anal-
ysis, which on large scales may suffer from similar prob-
lems as the temperature auto-correlation analysis [46].
The upcoming 2nd year data release of WMAP should
provide polarization maps and the corresponding analy-
sis may help improve the situation. Until then we will
use the current WMAP provided likelihood code [45], but
this should be taken as preliminary and the constraints
on optical depth from polarization, both the best fitted
value and the associated errors, may change.

With the addition of new constraints from the Lyα
forest and SDSS bias there remain correlations between
optical depth τ and several other parameters from 6-
parameter analysis on all data in table 1. Results are
shown in figure 1. The degeneracies are significantly less
severe than before, since the parameters are better deter-
mined with the new data. Still, there is room to improve
the constraints with a better determination of the optical
depth. For example, if the optical depth ends up being
at the lower end of its allowed range this would lead to

a decrease in the best fitted value of ns, h and σ8 and to
an increase in the best fitted value of Ωm. Note that the
values of τ do not extend up to the cutoff value τ = 0.3
for the 95% contours, so these distributions are not af-
fected by the choice of the prior τ < 0.3. However, in
chains with more parameters, such as dark energy equa-
tion of state w, this is no longer the case. At the mo-
ment the only argument for adopting this prior is that if
τ > 0.3 this would possibly have led to detectable auto-
correlation of polarization in the WMAP data, but this
argument is inconclusive since the polarization maps are
not available and such analysis has not been published
yet. In the absence of any published results we follow the
WMAP team approach and adopt τ < 0.3.

C. Neutrino mass

Both the CMB and LSS are important as tracers of
neutrino mass. At the time of decoupling, neutrinos are
still relativistic, but become nonrelativistic later in the
evolution of the universe if their mass is sufficiently high.
Neutrinos free-stream out of their potential wells, erasing
their own perturbations on smaller scales. Below this
suppression scale the power spectrum shape is the same
as in regular CDM models, so on small scales the only
consequence is the suppression of the amplitude relative
to large scales. In the matter power spectrum neutrinos
leave a characteristic feature at the transition scale. The
actual shape of the transition depends on the individual
masses of neutrinos and not just on their sum. For masses
of interest today the transition is occurring around k =
0.1h/Mpc, which are the scales measured by SDSS-gal.
Neutrinos with mass below 2eV are still relativistic when
they enter the horizon for scales around k = 0.1h/Mpc
and are either relativistic or quasi-relativistic at the time
of recombination, z ∼ 1100. As a result neutrinos cannot
be treated as a nonrelativistic component with regard to
the CMB and are not completely degenerate with the
other relativistic components in the CMB.

From the joint analysis we find for the sum of all masses
(table 3)

∑

mν < 0.42eV (0.67eV) (3 families), (4)

at 95% (99.9%) c.l. for a single component and assuming
no running, as was done in all of the work to date. Our
constraints improve upon WMAP+SDSS-gal, where we
find mν < 1.54eV and upon WMAP+2dF constraints,
where mν < 0.69eV was found by combining WMAP
and 2dF with the bias determination from the bispectrum
analysis [33].

If running and tensors are allowed, the parameter space
expands. In this case, we find mν < 0.66 (0.93)eV. Much
of this is caused by running: as discussed in [31] running
and neutrino mass are anti-correlated. Negative runnings
as large as -0.04 and neutrino masses as high as 1.5eV
are allowed at 2-sigma. Running is poorly motivated by
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FIG. 1: 68% (inner, blue) and 95% (outer, red) contours in
the plane of τ ) versus Ωm, h, σ8 and ns, respectively, using
all measurements.

inflationary models and there is no evidence for it in the
current data, so adopting the inflationary prior with no
running is reasonable, but one should be aware that the
limits are model dependent.

The constraint from equation 4 is remarkably tight and
implies the upper limit on neutrino mass assuming de-
generacy is 0.14eV at 95% c.l. Our constraint has been
obtained assuming 3 degenerate mass neutrino families,
but if the neutrino mass splittings are small the con-
straints on the sum are almost the same even if individ-
ual masses are not identical. If the masses are very large
compared to mass splittings then the neutrino masses
are close to degenerate. However, our upper limit is so
low that including mass splittings is necessary. Super-
Kamionkande (SK) results find neutrino mass squared
difference δm23 = 2.5 × 10−3eV2 [24, 26], while solar
neutrino constraints find neutrino mass squared differ-
ence δm12 = 8 × 10−5eV2 [25, 59, 60]. This gives one
neutrino family with minimum mass around 0.05eV and
another with minimum mass close to 0.007eV. Since only
the mass difference is measured, it is in principle possi-
ble that the actual neutrino masses are larger than that.
Our constraints in combination with SK and solar neu-
trino constraints limit the mass of the neutrino families
to

m1 < 0.13eV, m2 < 0.13eV, m3 < 0.14eV, (5)

all at 95% c.l. These limits essentially exclude the range
of masses argued by the Heidelberg-Moscow experiment
of neutrinoless double beta decay if neutrinos are Ma-
jorana particles [61], although the two results may still
be compatible given all the uncertainties in nuclear ma-
trix element calculations. From ∆m/m ∼ ∆m2/2m with
m ∼ 0.13eV we find the neutrino masses are not degener-
ate, but the limits are still weak: the ratios must satisfy

m3

m1
> 1.1, 1.1 <

m3

m2
< 7, (6)

where the upper limit on m3/m2 is determined solely
from SK and solar neutrino constraints.

The mass limits presented above are based on 3 degen-
erate massive neutrino families. If one assumes a model
with 3 massless families and 1 massive family (such as
a sterile neutrino model), as motivated by LSND results
[28], then the mass limits on the sum change, since both
the CMB and the matter power spectrum change (see
figure 6 in [31]). These limits are improved as well with
the addition of SDSS-lya and SDSS-bias. We find

mν < 0.79eV (1.55eV) (3 + 1 families), (7)

at 95 % (99.9%), compared to the WMAP+2dF analysis
without bias where the 95% confidence limit is 1.4eV
[29] and to the SDSS+WMAP analysis where the limit
is 1.37eV [31]. We have subtracted from the total sum in
table 3 the masses of the active neutrinos to obtain the
limit in equation 7. These limits are improved by almost



11

a factor of 2 compared to previous analyses. These limits
are more model independent, as there is little correlation
with running and/or tensors in this model: for the chains
with running and tensors we find mν < 0.88eV (1.40eV)
at 95% (99.9%) c.l.

From the LSND experiment the allowed regions are
four islands with the lowest mass mν = 0.9eV and the
next lowest 1.4eV [28, 29, 30, 62]. Thus the lowest island
allowed by LSND results is excluded at 95% c.l. and all
the others at 99.9%. Our derived limits will be tested
directly with MiniBoone Experiment at Fermilab [63].

D. Tensors

Gravity waves (tensors) are predicted in many models
of inflation. The simplest single field models of inflation
predict a tight relation between tensor amplitude and
slope, which we assume here. We choose to parametrize
them at the pivot point k = 0.05/Mpc, just as for the
amplitude, slope and running. This pivot differs from
that in the WMAP analysis [10]. While tensors have
their largest effect on large scales, within the single field
model adopted here the slope is assumed to be deter-
mined from the tensor amplitude. Thus there is no need
to parametrize tensors on large scales.

For 7-parameter model without running or neutrino
mass, the limit on tensors is (table 1)

T

S
< 0.36(0.51) (8)

at 95% (99.9%) c.l. This does not change significantly if
neutrinos or running are added to the mix (tables 2-3), in
the latter case we find r < 0.45(0.64). This constraint is
nearly a factor of two better than from WMAP analysis,
a consequence of tighter constraint on running from the
Lyα forest. We return to these constraints below where
we discuss inflation.

E. Spectral index

Constraints on the scalar spectral index are pri-
marily driven by the WMAP and SDSS-lya combina-
tion. Using these two experiments alone one finds
ns = 0.990+0.032

−0.029 for the chains with running, compared

to ns = 0.962+0.054
−0.056 for WMAP+SDSS-gal+SDSS-bias

without SDSS-lya and to ns = 0.975+0.028
−0.024 for the case

where all observations are included (table 2). The inclu-
sion of the SDSS Lyα forest thus reduces the error on
the primordial slope by a factor of 2. In the absence of
running and with bias and SNIa, this constraint improves
further to

ns = 0.981+0.019
−0.018

+0.040
−0.037

+0.061
−0.053. (9)

Note that the scale invariant model ns = 1 is only 1-
sigma away from the best fit. It is remarkable that such a
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FIG. 2: 68% (inner, dark) and 95% (outer, light) contours in
the (r = T/S, ns) plane with and without SDSS-lya. There
is a correlation between tensors and slope ns. Inclusion of
the Lyα forest significantly reduces the allowed region in this
plane. Also shown are the positions of two chaotic inflation
models, V ∝ φ2 with N = 50 and V ∝ φ4 with N = 60.

vast range of observational constraints can be reproduced
with a scale invariant power spectrum with 4 parameters
only, Ωb, Ωm, h and amplitude ∆2

R
(plus possibly optical

depth τ to explain the polarization data).
Tensors are positively correlated with the slope (figure

2) and their inclusion increases the best fit slope value to
ns = 1.00+0.034

−0.028. All of these are consistent with a scale
invariant spectrum and are in a good agreement with
the WMAPext+2dF constraint ns = 0.97 ± 0.03 [40].
While 2dF gives a slightly redder spectrum than SDSS
the differences in different values quoted in the literature
reflect mostly the differences in the assumed parameter
space, as shown here for the example of tensors.

F. Running of the spectral index

The issue of the running of the primordial slope
has generated a lot of interest lately. WMAP ar-
gued for some weak evidence for negative running in
their combined analysis, but some of that evidence was
based on Lyman alpha constraints by previous workers
[19, 64], which were shown to underestimate the errors
[42]. It was argued that even from WMAP alone, or
WMAP+2dF, there is some evidence for running, and
the WMAP+SDSS-gal analysis without bias information
gave αs = −0.071 ± 0.044 [11]. Similar values have
been found from the recent analyses including CBI [37]
and VSA [38] data. However, much of this effect comes
from low l multipoles and a full likelihood analysis of
WMAP+SDSS-gal changes this value to −0.022± 0.033
[46]. Including the biasing constraints does not really
change this result. In the absence of massive neutrinos
and tensors we find αs = −0.022+0.030

−0.032, so αs = 0 is
within one sigma of 0 and the error has not been reduced.

Including SDSS-lya reduces the errors dramatically.
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FIG. 3: 68% (inner, dark) and 95% (outer, light) con-
tours in the (αs, ns) plane using WMAP+SDSS-lya versus
WMAP+SDSS-gal+bias. Adding the SDSS Lyα forest dra-
matically reduces the allowed region of parameter space in
this plane. Note that the simplest model with ns = 1 and
αs = 0 is within 68% interval.

The constraint on running from WMAP+SDSS-lya alone
is αs = −0.0026+0.013

−0.011. Including everything this changes
slightly to

αs = −0.0029+0.011
−0.010

+0.023
−0.018

+0.036
−0.026, (10)

which is a factor of 3 improvement over previous con-
straints. Even with this significant improvement we find
no hint of running in the joint analysis. The result is
in perfect agreement with no running and 95% of chain
elements have αs > −0.015. This should be compared
to values as low as αs ∼ −0.10 in figure 3. Similarly low
values have been found in recent analyses [37, 38]. Fig-
ure 3 shows old and new constraints in the (αs, ns) plane,
highlighting the dramatic reduction of available parame-
ter space when CMB and Lyα forest data are combined
together. The implications of this result for inflation are
discussed in the next section.

If tensors are also included they induce weak anti-
correlation with running, so the best fit value becomes
αs = −0.006+0.012

−0.011, which is still perfectly consistent with
no running. This is shown in figure 4, where we see that
adding SDSS-lya to the mix dramatically reduces the al-
lowed region of parameter space. Specifically, without
SDSS-lya, runnings as negative as -0.15 are in the 95%
confidence region, a consequence of strong correlation be-
tween running and tensors. Our joint analysis eliminates
these large negative running solutions. We find no evi-
dence for running in the current data, with or without
tensors, despite a factor of 3 reduction in the errors.

Running is correlated with some of the ”nuisance” pa-
rameters we marginalize over in the analysis and addi-
tional observations constraining these could lead to a
further reduction of errors on the primordial slope and
its running even with no additional improvements in the
observations. For example, in our current treatment
of the filtering parameter kF (a generalization of the
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FIG. 4: 68% (inner, dark) and 95% (outer, light) con-
tours in the (αs, r) plane using WMAP+SDSS-lya versus
WMAP+SDSS-gal+bias. Adding the SDSS Lyα forest dra-
matically reduces the allowed region of parameter space in
this plane. Note that the simplest model with αs = 0 and
r = 0 is within the 68% interval.

Jeans length), we assume that the minimum reioniza-
tion redshift is around 10 with a reheating temperature
of 25,000K. If we change the redshift to 7, this leads to
an increase in the maximum value of kF allowed. In
this case we find for WMAP+SDSS-lya analysis the run-
ning changes from αs = 0.0017 to -0.0045, with an er-
ror around 0.01 (see table 2). If we change this redshift
to 4, below its theoretically allowed lower limit of 6.5,
to allow for any residual resolution issues in numerical
simulations, we find αs = −0.009 with comparable er-
rors. All the other parameters change much less. While
these changes are small and do not qualitatively change
our conclusions, they may be important for the future
analyses where smaller errors may be obtained. In all
these cases the data prefer a high value of kF , i.e. a
late epoch of reionization. Independent constraints on
the tempetarure evolution of IGM would be helpful to
constrain this further.

G. Matter density and Hubble parameter

The matter density parameter Ωm has contributions
from cold dark matter, baryons, and neutrinos. We as-
sume spatially flat universe, so matter density Ωm is
related to dark energy density Ωm = 1 − Ωλ. As em-
phasized in [65], the matter density is still allowed to
cover a wide range of values from the present data: in 7-
parameter models with running WMAP+SDSS-gal gives
Ωm = 0.269+0.041

−0.033. WMAP+SDSS-lya gives a slightly

lower value with comparable error, Ωm = 0.257+0.055
−0.048 in

models with running. Combining WMAP, SDSS-gal and
SDSS-lya gives Ωm = 0.299+0.037

−0.032. Including the bias and
SNIa and ignoring running brings the value to

0.282+0.021
−0.020

+0.043
−0.043

+0.066
−0.067 (11)
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which is a factor of 2 improvement over previous con-
straints. The matter density is correlated with r and in-
clusion of tensors in the parameter space slightly reduces
the density parameter. There is a significant improve-
ment in (σ8, Ωm) plane with the addition of new data
(figure 5).

Despite the improvements the matter density remains
strongly correlated with the Hubble parameter h, as ex-
pected from the fact that Ωmh2 is better determined from
the CMB than each parameter separately. This is shown
in figure 6 for 6-parameter models for the analysis with
and without inclusion of SDSS-lya.

For the Hubble parameter the best fit value and its
error is h = 0.71 ± 0.02 in 6-parameter space. In 9-
parameter space with tensors, massive neutrinos and run-
ning we find h = 0.74 ± 0.05. All of these fits are sta-
tistically acceptable and are in good agreement with the
HST key project value h = 0.72 ± 0.08 [66], although a
different group using almost the same data continues to

find a significantly lower value h = 0.58 ± 0.06 [67].
The new data also improve significantly the age of the

universe constraint. We find t0 = 13.6+0.19
−0.19Gyr, com-

pared to 14.1+1.0
−0.9Gyr found from the WMAP+SDSS-gal

analysis [11].

H. Dark energy

So far we have assumed dark energy in the form of
a cosmological constant, w = −1. We now relax this
assumption and explore the constraints on w. To maxi-
mize the constraints we add to some of the analyses the
“gold” SNIa data [7]. Because we do not want to limit
ourselves to w > −1 we assume dark energy does not
cluster (ndyn = 3 option in CMBFAST4.5). Note that
clustering of dark energy vanishes for w=-1 and so if w is
close to -1 then it makes very little difference if clustering
is included or not. Figure 7 shows the constraints in the
(w, Ωm) plane. We find

w = −0.990+0.086
−0.093

+0.16
−0.201

+0.222
−0.351. (12)

We see that w = −1 is an acceptable solution. This
should be compared to w = −1.01+0.097

−0.12 we find in
the absence of bias and Lyα forest constraint, to w =
−0.91+0.13

−0.15 using the new SNIa data but just some of the

LSS constraints [68], to w = −1.02+0.13
−0.19 using a simple

Ωm prior [7], and to w = −0.98+0.12
−0.12 from the WMAP

1st year analysis [40]. It is worth emphasizing the agree-
ment and complementarity of the LSS, CMB, and SNIa
constraints: in the absence of SNIa data the constraint
is w = −1.02+0.15

−0.19 and w is positively correlated with Ωm

(figure 7). These solutions allow phantom energy models
(w < −1) with w as low as -1.5 for low matter density val-
ues. On the other hand the two are anticorrelated for the
WMAP+SDSS-gal+SNIa data constraints, and phantom
energy solutions are allowed for high values of the matter
density. Combing the two sets of constraints significantly
reduces the parameter space of allowed solutions. All of
these different combinations give very consistent results
and the median value hardly changes at all and is in all
cases very close to w = −1. Our constraints are a factor
of 1.5-2 better than previously published constraints on
the dark energy equation of state. Some of the improve-
ment comes from our more sophisticated analysis which
includes all of the information previously available and
some from the new constraints from the bias and Lyα for-
est, which further reduce the errors. This is an example
of how combining different data sets leads not only to a
significant improvement in the accuracy of cosmological
parameters, but also how consistency among the different
methods gives confidence in the resulting constraints.

The results are weakly model dependent, in the sense
that they are sensitive to the parameter space over which
one is projecting. If we include tensors and running in
the analysis we find

w = −0.908+0.077
−0.091

+0.143
−0.197

+0.192
−0.324 , (13)
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roughly a 1-sigma change in the central value compared
to the case without tensors in equation 12. Figure 8
shows that tensors and the equation of state are corre-
lated. The shift in the best fitted value of w reflects a
large volume of parameter space associated with r > 0
models and not any fit improvement when adding ten-
sors and running: χ2 changes only by 1 and there is no
need to introduce tensors (or w 6= −1) to improve the
fit to the data. We also find no correlation between the
equation of state and running.

Our constraints eliminate a significant fraction of pre-
viously allowed parameter space, with 95% contours at
−1.19 < w < −0.83 without tensors and at −1.11 < w <
−0.77 with tensors. Thus a large fraction of the parame-
ter space of ”phantom energy” models with w < −1 [69]
and tracker quintessence models with w ∼ −0.7 [70] ap-
pears to be excluded. Other dark energy models which
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FIG. 9: 68% (inner, blue) and 95% (outer, red) contours in
the (w0, w1) plane using WMAP+SDSS-gal+bias+lya+SNIa
measurements. We find that the simplest solution, w0 = −1,
w1 = 0 (marked by a cross), fits the data best.

predict w ∼ −1 remain acceptable. It is interesting to
note that simplest quintessence solutions with w > −1
are more acceptable if tensors are present at a level pre-
dicted by some inflationary models (r ∼ 0.2).

We also ran a MCMC simulation exploring a non-
constant equation of state. We use a second order ex-
pansion

w = w0 + (a − 1)w1 + (a − 1)2w2, (14)

where a = 1/(1 + z) is the expansion factor [71]. The
advantage of this expansion is that it is well behaved
throughout the history of the universe from early times,
when a ∼ 0, to today (a = 1). This is in contrast to
the often adopted expansion in terms of the redshift,
w = w0 + w′z, which diverges at high redshift and so
can give artificially tight constraints on w′ if CMB (or
even BBN) constraints at high redshift are used, without
actually saying much about the time dependence of w in
the relevant regime 0 < z < 1. In contrast, using our
expansion 0 < z < 1 covers half of the full range of w so
w1 is being constrained in the regime of interest. If we
impose w2 = 0 then the best fit values and errors we find
using all the data are

w0 = −0.981+0.193
−0.193

+0.384
−0.373

+0.568
−0.521

w1 = 0.05+0.83
−0.65

+1.92
−1.13

+2.88
−1.38. (15)

We find that w0 = −1, w1 = 0 is well within 1-σ contour
and very close to the best fit model (figure 9).

The parameters w0, w1 and w2 are strongly correlated,
as shown in figure 9 for the first two, so the error on w0

has expanded by a factor of 2 compared to the constant
equation of state case. We can explore less model depen-
dent constraints on w(z) by computing the median and 1,
2-σ intervals from MCMC outputs at any redshift. Over
a narrow range of redshift these contours will be nearly
model independent as long as the equation of state is a
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relatively smooth function of redshift. We find that the
data constrain best the equation of state w at z = 0.3,
where we find w(z = 0.3) = −1.011+0.095

−0.099
+0.176
−0.215

+0.264
−0.357.

Thus z = 0.3 is the pivot point for the current mea-
surements of equation of state and the constraint here
is nearly model independent. This is confirmed by our
analysis with w2. In this case we find severe degeneracies
among the 3 paramaters, but the value at z = 0.3 is

w(z = 0.3) = −0.981+0.106
−0.120

+0.205
−0.249

+0.269
−0.386, (16)

which is nearly the same as for the two parameter analysis
with w2 = 0. These constraints are shown in figure 10.

The corresponding constraint at z = 1 for two
parameter (w0, w1) analysis is w(z = 1) =
−1.00+0.17

−0.28
+0.27
−0.66

+0.33
−1.00. Adding w2 we find

w(z = 1) = −1.03+0.21
−0.28

+0.39
−0.58

+0.52
−0.85, (17)

so 1-σ contours are nearly the same, while 2 and 3-σ
contours expand in the positive direction and shrink in
the negative direction compared to 2-parameter analy-
sis. This value is thus also relatively independent of
parametrization.

Adding tensors and running to the 3-parameter ex-
panasion of w gives,

w(z = 0.3) = −0.914+0.089
−0.106

+0.169
−0.225

+0.229
−0.343 (18)

and

w(z = 1.0) = −0.93+0.21
−0.25

+0.35
−0.56

+0.48
−0.90. (19)

This is shown in figure 11. Thus, in either case, there
is no evidence for any time dependence of the equation
of state and its value is remarkably close to -1 even at
z = 1. As for a constant w analysis we find that tensors
increase the preferred value of w by about 0.1. These
constraints on the time dependence of w are significantly
better compared to the 0.8-0.9 allowed variation between
z = 0 and z = 1 found previously [7]. Lyα forest analysis
measures the growth of structure in the range 2 < z < 4
and so helps in constraining models with a significant
component of dark energy present at z > 2 [57].

IV. IMPLICATIONS FOR INFLATION

Inflation is currently the leading paradigm for explain-
ing the generation of structure in the universe. Inflation,
an epoch of accelerated expansion in the universe, ex-
plains why the universe is approximately homogeneous
and isotropic and why it is flat [72, 73, 74, 75]. Dur-
ing this accelerated expansion quantum fluctuations are
transformed into classical fluctuations when they cross
the horizon (i.e., their wavelength exceeds the Hub-
ble length during inflation) and can subsequently be
observed as perturbations in the gravitational metric
[76, 77, 78, 79, 80]. A generic prediction of a single field

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

w

z

FIG. 10: Median (central line), 68% (inner, red) and 95%
(outer, yellow) intervals of w(z) using all the data in the chains
without tensors and with a 3 parameter expansion of equation
of state with respect to the expansion factor. Very similar
results are found for the 2 parameter expansion of w, so the
constraints are reasonably model independent as long as w
is a smooth function of redshift. We find that the simplest
solution, w = −1, fits the data at all redshifts.

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

w

z

FIG. 11: Same as figure 10 but for MCMC with tensors.

inflation models is that the perturbations are adiabatic
(meaning that all the species in the universe are unper-
turbed on large scales except for the overall shift caused
by the perturbation in the metric) and Gaussian. These
predictions, together with flatness (K = 0), have been
explicitly assumed in our analysis.

We note here that cyclic/ekpyrotic models [81] are an
alternative to inflation, which, despite a very different
starting point and without a period of accelerated ex-
pansion, lead to almost identical predictions as inflation
[12]. Specifically, these models predict no observable ten-
sor contribution, spectral index ns close to unity, and
negligible running [13]. Very specific forms of cyclic po-
tentials have not been explored in much detail in these
models and for this reason we will not discuss them ex-
plicitly below, but most of our constraints on the form
of the inflationary potential can easily be translated into
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the corresponding constraints on the form of cyclic model
potential.

Here we will explore a class of single field inflation mod-
els, in which there is a single field responsible for the dy-
namics of inflation (even though additional fields may be
present or even required to end inflation, as in the case of
hybrid inflation [82]). We will assume the early universe
is dominated by a minimally coupled scalar field φ, which
we will express in Planck mass units setting 8πG = 1.
During inflation the energy density is dominated by po-
tential V . The Hubble parameter H2 = V/3 is nearly
constant and the equation of state is w = p/ρ ∼ −1.
Since H = d ln a/dt it follows that the expansion factor
is exponentially increasing with time, a = aende

H(t−tend).
One can introduce the number of e-folds before the end
of inflation at time t0 as

N = ln(aend/a0) =

∫ tend

t0

H(t)dt =

∫ φend

φ0

V

V ′
dφ, (20)

which can be computed for any specific form of the po-
tential. Here we will define it to be the number of e-
folds before the end of inflation when the pivot point,
kpivot = 0.05/Mpc, crosses the horizon. Note that the
usual definition is with respect to the largest observable
scale, k ∼ 10−3/Mpc, which corresponds to ∆N = 4
larger number of efolds. The latter number is expected
to be between 50-60 efolds for standard inflation (64 for
V ∝ φ4), but could be as low as 20 or as high as 100
in special cases [83, 84]. For our pivot point choice we
will thus adopt N = 50 as the standard value (60 for
V ∝ φ4), but also explore more general constraints on it.

If the kinetic energy density were negligible all the
time the universe would keep exponentially expanding
and there would be no end to inflation. Typically there-
fore one must have deviations from the pure w = −1
case. These deviations lead not only to a finite number
of efolds, but also break the scale invariance of the pri-
mordial power spectrum. Since we know from current
observational constraints that r < 1 and ns ∼ 1 we can
adopt the slow-roll approximation to relate the form of
the potential to the observed quantities r, ns, αs, and
∆2

R
. The slow-roll parameters are defined as [9]

ǫV =
1

2

(

V ′

V

)2

ηV =
V ′′

V

ξV =
V ′V ′′′

V 2
. (21)

Note that in some early literature the 3rd slow-roll pa-
rameter ξ was denoted as ξ2 to emphasize the point that
it is generically of second order in ǫ or η [85]. We will
not use this notation since ξ can be positive or negative
and since it does not have to be of second order in the
slow-roll expansion.
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FIG. 12: 68% (inner, blue) and 95% (outer, red) contours in
the (ǫV , ηV ) plane using all the measurements without run-
ning (table 1, 5th column). Also shown are the regions occu-
pied by the 3 classes of inflationary models. All 3 classes of
models are allowed, but individual models within each class
are constrained. Note that the solutions disfavor low energy
models (ǫV = 0) with large positive curvature (ηV > 0), typ-
ical of hybrid inflation models, as well as models where both
ǫV is large and ηV < ǫV /2, typical of chaotic inflation models
with steep potentials.

The relations between the slow-roll parameters and ob-
servables are

∆2
R

=
V

24π2ǫV

r = 16ǫV

ns − 1 = −6ǫV + 2ηV

αs = 16ǫV ηV − 24ǫ2V − 2ξV . (22)

As mentioned in the previous section, we assume r =
−8nT and do not consider the running of the tensor spec-
tral index, both of which should be valid for single field
inflation in the relevant regime.

Traditionally the inflationary models are divided into
separate classes depending on the value of first two slow-
roll parameters [9, 86, 87]. Figure 12 shows the distri-
bution in the (ǫV , ηV ) plane. We see that both positive
and negative values of η are allowed and that there is
a strong correlation between the two from the observa-
tional constraints, a consequence of positive correlation
between tensors and primordial slope. Figure 13 shows
the distribution in the (ηV , ξV ) plane. Both parameters
are consistent with 0. The basic constraints are ǫ < 0.03,
−0.04 < η < 0.12 and −0.015− < ξV < 0.035, so all slow
roll parameters are small.

A. Large field models

The simplest inflationary models are the monomial po-
tentials, V = V0φ

p, for which the first two parameters
are comparable, ǫ ∼ η, and the curvature is positive,
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FIG. 13: 68% (inner, blue) and 95% (outer, red) contours
in the (ηV , ξV ) plane from MCMC with running and tensors
(table 2, 5th column).

η > 0. These potentials occur in chaotic inflation models
[88]. In these models a deviation from scale invariance,
ns − 1 = −(2 + p)/2N , also implies a significant ten-
sor contribution, r = 4p/N , while running is negligible,
αs = −2(ns−1)2/(p+2) = −(p+2)/2N2. Because both
slow-roll parameters are of order (p/φ)2 these chaotic
inflation-type potentials require a large field, φ > 1, to
satisfy observationally required r < 1 and ns ∼ 1. For
this reason these models are sometimes called large field
models. While this may limit their particle physics moti-
vation there are brane inspired models where this prop-
erty can be justified [89]. More generic parametrization
of these models in terms of curvature is 0 < ηV < 2ǫV .

With the exception of p = 2, chaotic models are not
particularly favored from our analysis. Figure 2 shows
the position in the (r, ns) plane for two representative
cases, p = 2 and p = 4. We find that the V ∝ φ2 model
(ns = 0.96, r = 0.16 for N=50) is within the 2-sigma con-
tour, while the V ∝ φ4 model (ns = 0.95, r = 0.27 for
N=60) is outside the 3-sigma contour, since it predicts
more tensors and a redder spectrum for that tensor am-
plitude than observed. Figure 14 shows all chain elements
with ns < 1 converted to (p, N) values using the expres-
sions above. For standard inflation we require N < 60
and this limits us to p < 3. Similarly, figure 12 shows
that ǫV > ηV /2 with large ǫV models are disfavored.

For specific models we also minimized χ2 by exploring
all of the parameter space of the remaining parameters
and compared that to the global minimum in χ2. We find
∆χ2 = 5 for the V ∝ φ2 model and ∆χ2 = 13 for the
V ∝ φ4 model. These results are in agreement with the
MCMC results and show that the latter case is excluded
at more than 3 − σ confidence.
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FIG. 14: Scatter plot of MCMC solutions with ns < 1
converted into the (p,N) plane assuming relations valid for
chaotic inflation models. Here p is the slope of the inflation-
ary potential and N is the number of e-folds. For N < 60 we
require p < 3.

B. Large positive curvature models

We turn next to models with positive large curvature,
η > 2ǫ. A generic potential of this type can be ob-
tained by adding a constant to the monomial potential,
V = V0(1+ cφp), where c is a positive dimensionless con-
stant. These models allow small field solutions to infla-
tion, φ ≪ 1, and so are popular for model building in the
context of supersymmetry. In this limit, and if dimen-
sionless c is not too large, one has ǫ ≪ 1. In such models,
inflation never ends (since the potential never drops to
zero), so another field must be brought in to accomplish
this. Hybrid inflation is an example of such a mecha-
nism [82]. If ǫ is small then these models predict r ∼ 0
and ns > 1 (equations 22, the latter condition requires
ǫ < η/3). For p = 2 the slope is constant, ns − 1 = 2c
and there is no running, while for p > 2 running is nega-
tive and is given by αs = −(p − 2)/(p − 1)[(ns − 1)]2/2.
This is always small since a large deviation in the ns > 1
direction is strongly disfavored, so αs ∼ 0. Some of these
models are disfavored: for r = 0 and in the absence of
running we find ns < 1.0 at 90% confidence and ns < 1.04
at 99.9% confidence, so if ǫV ∼ 0 then ηV > 0.02 is ex-
cluded at 3 sigma. Thus the deviations from scale in-
variance have to be very small for these models to be
acceptable.

C. Large negative curvature models

The most promising models from the observational
perspective are negative curvature models, η < 0. As
noted above, the main reason that large positive curva-
ture models are disfavored is that in the absence of ten-
sors the data favor ns < 1, while small positive curvature
models are disfavored because they predict large tensors
and a red spectrum at the same time, whereas the data
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are more consistent with blue spectrum if tensors are sig-
nificant. A generic potential of negative curvature mod-
els can be obtained by switching the sign on the hybrid
potential form, V = V0(1 − cφp), where c is a positive
dimensionless constant. In these models the field φ is
slowly rolling from low to high values until reaching the
point where the potential vanishes at cφp = 1, at which
point inflation stops. This is a generic scenario of sponta-
neous symmetry breaking models as in the first working
inflation model, that of new inflation [74]. For p = 2 the
slope is again constant at ns − 1 = −2c and there is no
running.

In these models one has ns − 1 = −2(p− 1)/(p− 2)/N
and αs = −(p − 2)/(p − 1)[(ns − 1)]2/2. The running is
of order (ns −1)2/2 and the prefactor is unity at best, so
running is negligible. The slope ns ranges between 0.96
(in the limit of |p| → ∞,where ns − 1 = −2/N) and 1, in
excellent agreement with observational constraints.

One finds good agreement using other potentials pro-
posed in the literature, such as the potential based on
one-loop correction in a spontaneous symmetry broken
SUSY [90]. The potential is of the form V = V0[1 +
α ln(φ/Q)]. In this model the number of e-folds is of
the order N = φ2/2α (this expression works best if
α ≪ 1). This model predicts ns − 1 = −2α[1 + 3α/2]/φ2

and αs = −(ns − 1)2[2α + 3α2/2 + 1/2]/[1 + 3α/2]2.
Running is again negligible. Solutions with φ ≪ 1 re-
quire α ≪ φ2 ≪ 1, in which case the slope becomes
ns − 1 = −1/N = −0.02 for N = 50, in excellent agree-
ment with the observed value ns = 0.971+0.023

−0.019.

Many other models in this class also work. A model
often mentioned as an example of allowing a large run-
ning is the softly broken SUSY model with V = V0(1 −
cφ2(ln(φ/φ∗)−1/2)/2. This model has a large 3rd deriva-
tive for small field φ, V ′′′/V0 = −c/φ, so it can lead to
large ξ and large runnings. For this model there is an in-
equality relation between slope and running of the form

αs > − (ns−1)2

4 > −2× 10−3, so a large negative running
cannot be accommodated in this model for the allowed
values of ns. Our solutions do not favor large negative
runnings anyways, unless one is willing to consider mod-
els with massive neutrinos whose mass exceeds 0.3eV, so
this model is acceptable, but it can overpredict the run-
ning on the positive side.

There are also examples of models which can change
from one inflationary case to the other, such as
hybrid model with one-loop correction [91], V =

V0

[

1 + α
(

ln(φ/Q) + c
4

(

φ
φ0

)p)]

, which under specially

arranged conditions causes the slope to change from
ns > 1 on large scale to ns < 1 on small scale. Again,
there is no evidence for such a transition in the data, so
there is no need to consider these special cases.

Finally, there are models that predict the simplest pos-
sible case of r = 0, ns = 1 and αs = 0 [92]. These models
are perfectly acceptable from our data.

While we only surveyed a small subset of inflationary
models here, it is clear that their generic prediction is a

nearly scale invariant spectrum, |ns − 1| < 0.05, little or
no tensors, r < 1 and small running, αs ∼ 10−3. All of
these predictions agree with our constraints. Running is
a particularly powerful test of standard inflationary (and
cyclic) models in the sense that if running turned out to
be large, a large class of inflationary models would have
been eliminated. The original suggestions of running in
the WMAP data sparked a lot of theoretical interest in
inflationary models with running [93, 94], but such mod-
els are unnatural in the sense that they require a feature
in the potential at exactly the scale of observations to-
day. Our results suggest that the natural prediction of
inflation, small running, is confirmed by observations.

V. CONCLUSIONS

In this paper we performed a joint cosmological anal-
ysis of WMAP, the SDSS galaxy power spectrum and its
bias, the SDSS Lyα forest power spectrum, and the lat-
est supernovae SNIa sample. We work in the context of
current structure formation models, such as inflation or
cyclic models, so we assume spatially flat universe and
adiabatic initial conditions. We also ignore more exotic
components such as warm dark matter. The new ingre-
dients, SDSS Lyα forest and SDSS bias, lead to a signifi-
cant reduction of the errors on all the parameters. Many
parameters are improved in accuracy by factors of two
or more. For example, for the amplitude of fluctuations
we find σ8 = 0.90 ± 0.03 and for the matter density we
find Ωm = 0.28 ± 0.02, both a significant improvement
over previous constraints. From the fundamental physics
perspective the highlights of the new constraints are:

1) The scale invariant primordial power spectrum is a
remarkably good fit to the data and there is no evidence
that the spectral index deviates from the scale invariant
value ns = 1, nor is there any evidence of its running
with scale. We also find no evidence of tensors in the
joint analysis. The constraints on running have improved
by a factor of 3 compared to an analysis without the new
Lyα forest constraints. These provide a data point at
2 < z < 4 and k ∼ 1/Mpc, a significantly smaller scale
than scales traced by the CMB and galaxies.

2) There is no cosmological evidence of neutrino mass
yet. In the standard models with 3 neutrino families we
find for the total neutrino mass

∑

mν < 0.42eV (95%
c.l.). When our analysis is combined with atmospheric
and solar neutrino experiments [25, 26] we find that neu-
trino masses are not degenerate: the most massive neu-
trino family has to be at least 10% more massive than the
least massive family, m3/m1 > 1.1: the mass of the least
massive neutrino family has to be m1 < 0.13eV, and that
of the most massive neutrino family m3 < 0.15eV, both
at 95 % c.l. In alternative models with a 4th massive
neutrino family in addition to 3 (nearly) massless ones
we find mν < 0.79eV, excluding all of the allowed LSND
islands at 95% c.l.

3) Dark energy continues to be best characterized as
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a standard cosmological constant with constant energy
density and equation of state w = −1. When all the data
is combined together the error on w is 0.09, a reduction
compared to previously published values [7, 40, 68]. A
cosmological constant with w = −1 is remarkably close
to the best fit value for a variety of different subsam-
ples of the data. A significant region of phantom energy
parameter space with w < −1 is excluded, as are some
of the tracker quintessence models with w ∼ −0.7. The
current data do not support any time dependence of the
equation of state.

As the statistical errors are being reduced the required
level at which systematics must be controlled increases
as well. Our limits on cosmological parameters assume
that the errors from the SDSS Lyα forest SDSS power
spectrum shape, SDSS bias, WMAP CMB power spec-
trum, and the SNIa data are all properly characterized
by the authors and that there are no additional sources
of systematic error. Each one of these ingredients has to
be tested and redundancy is necessary for the results to
be believable. In our extensive tests we find no evidence
of a disagreement between the different observational in-
puts, but further tests with these and other data sets are
needed to verify and confirm our results. In addition,
the upcoming 2 year analysis of WMAP polarization will
improve the constraints on the optical depth and reduce
the errors on parameters correlated with it.

Tests of the basic model are particularly important for
Lyα forest , which is responsible for most of the improve-
ment on the primordial power spectrum shape and ampli-
tude. Despite the extensive tests presented in [23], more
work is needed to investigate all possible physical effects
that can modify its distribution and to see how these
may affect the conclusions reached in this paper. Some
of these tests will come from the ongoing work on SDSS
data, such as the bispectrum analysis. Similarly, more
work is needed to verify the accuracy of simulations with
independent hydrodynamic codes. The present analy-
sis, together with its sister papers [22, 23], is not the
final word on this subject, but merely a first attempt
to take advantage of the enormous increase in statisti-
cal power given by the SDSS data [15]. Current analy-
sis marginalizes over many physical processes that have
little or no external constraints and as a result the sta-
tistical power of cosmological constraints from the Lyα

forest is weakened. Better theoretical understanding of
these processes together with external constraints from
additional observational tests could lead to a significant
reduction of observational errors on the primordial slope
and its running even with no additional improvements in
the observations.

In summary, adding SDSS Lyα forest and SDSS bias
constraints to cosmological parameter estimation leads
to a significant improvement in the precision with which
the cosmological parameters can be determined. De-
spite these improvements we find no surprises. Many
of these results are not unexpected, but the tightness of
the constraints is rapidly eliminating many of the alter-
native models of structure formation, neutrinos and dark
energy. Future cosmological observations and improve-
ments in theoretical modelling will allow us to verify the
constraints found here and improve them further. As
the constraints become tighter there may be additional
surprises awaiting us in the future.
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